Before the featured portal process ceased in 2017, this had been designated as a featured portal.
Page semi-protected


From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Used for calculation, it is considered the most important subject. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

Refresh with new selections below (purge)

Featured articles - load new batch

Cscr-featured.png  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

four scatterplots each containing 11 points and a fitted regressions line; the scatterplots look very different but each has the same regression line
Credit: User:Avenue based on original by User:Schutz (data by Francis Anscombe)
Anscombe's quartet is a collection of four sets of bivariate data (paired xy observations) illustrating the importance of graphical displays of data when analyzing relationships among variables. The data sets were specially constructed in 1973 by English statistician Frank Anscombe to have the same (or nearly the same) values for many commonly computed descriptive statistics (values which summarize different aspects of the data) and yet to look very different when their scatter plots are compared. The four x variables share exactly the same mean (or "average value") of 9; the four y variables have approximately the same mean of 7.50, to 2 decimal places of precision. Similarly, the data sets share at least approximately the same standard deviations for x and y, and correlation between the two variables. When y is viewed as being dependent on x and a least-squares regression line is fit to each data set, almost the same slope and y-intercept are found in all cases, resulting in almost the same predicted values of y for any given x value, and approximately the same coefficient of determination or R² value (a measure of the fraction of variation in y that can be "explained" by x, or more intuitively "how well y can be predicted" from x). Many other commonly computed statistics are also almost the same for the four data sets, including the standard error of the regression equation and the t statistic and accompanying p-value for testing the significance of the slope. Clear differences between the data sets are apparent, however, when they are graphed using scatter plots. The plots even suggest particular reasons why y cannot be perfectly predicted from x using each regression line: (1) While the variables are roughly linearly related in the first data set, there is more variability in y than can be accounted for by x, as seen in the vertical spread of the points around the regression line; in this case, one or more additional independent variables may be needed to account for some of this "residual" variation in y. (2) The second scatter plot shows strong curvature, so a simple linear model is not even appropriate for the data; polynomial regression or some other model allowing for nonlinear relationships may be appropriate. (3) The third data set contains an outlier, which ruins the otherwise perfect linear relationship between the variables; this may indicate that an error was made in collecting or recording the data, or may reveal an aspect of the variation of y that has not been considered. (4) The fourth data set contains an influential point that is almost completely determining the slope of the regression line; the reliability of the line would be increased if more data were collected at the high x value, or at any other x values besides 8. Although some other common summary statistics such as quartiles could have revealed differences across the four data sets, the plots give additional information that would be difficult to glean from mere numerical summaries. The importance of visualizing data is magnified (and made more complicated) when dealing with higher-dimensional data sets. Multiple regression is a straightforward generalization of linear regression to the case of multiple independent variables, while "multivariate" regression methods such as the general linear model allow for multiple dependent variables. Other statistical procedures designed to reveal relationships in multivariate data (several of which are closely tied to useful graphical depictions of the data) include principal component analysis, factor analysis, multidimensional scaling, discriminant function analysis, cluster analysis, and many others.

Good articles - load new batch

Symbol support vote.svg  These are Good articles, which meet a core set of high editorial standards.

Did you know – view different entries

Did you know...
Showing 7 items out of 75

More Did you know (auto generated)

Nuvola apps filetypes.svg

Selected article – show another

Blaise pascal.jpg
Blaise Pascal
Image credit: User:Anarkman

Blaise Pascal (pronounced [blez pɑskɑl]), (June 19, 1623 – August 19, 1662) was a French mathematician, physicist, and religious philosopher. He was a child prodigy who was educated by his father. Pascal's earliest work was in the natural and applied sciences where he made important contributions to the construction of mechanical calculators, the study of fluids, and clarified the concepts of pressure and vacuum by generalizing the work of Evangelista Torricelli. Pascal also wrote powerfully in defense of the scientific method.

A mathematician of the first order, Pascal helped create two major new areas of research. He wrote a significant treatise on projective geometry at the age of sixteen and corresponded with Pierre de Fermat from 1654 on probability theory, strongly influencing the development of modern economics and social science.

Following a mystical experience in late 1654, he abandoned his scientific work and devoted himself to philosophy and theology. However, he had suffered from ill-health throughout his life and his new interests were ended by his early death two months after his 39th birthday. (Full article...)

View all selected articles


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png

Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Nuvola apps kpovmodeler.svg

Index of mathematics articles


Related portals


WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:






Learning resources